Experimental testing of 1/3 scale model sampler for horizontally ducted particulate material streams

Claas Wagner ACABS Research Group, Aalborg University, Denmark

Horst Faust FLSmidth Wuppertal, Sample Processing Technology, Germany

Kim H. Esbensen National Geological Survey of Denmark and Greenland (GEUS), Denmark
ACABS Research Group, Aalborg University, Denmark
Research motivation

• Sampling of particulate materials in vertical flow streams, especially falling streams and stationary lots enjoy plenty of successful TOS-correct solutions, but no fully satisfactory sampler has been presented for the 1-D case of forcefully ducted horizontal particulate material streams.

• Horizontal pneumatic transportation systems are used in very many industries, but currently no satisfactory possibility exists to evaluate material characteristics from this process location because of no satisfactory sampling system.

• Successful development of a sampler for this scenario should allow to obtain representative samples and thus prepare the way for analytical results “on the fly”. A universal sampler can not be expected for all material and lot types however.

• The present R&D foray is specifically oriented towards the power industry, to sample just before burners of pneumatically transported pulverized biomass fuel types (wood chips, wood- and straw pellets etc.).

• First generation results are expected to lead to more general samplers/applications.
Challenges of sampling from horizontally ducted flows

• In horizontally ducted flows, transportation of aggregate material streams must *perforce* cause significant (if not *severe*) gravitative and radial flow segregation.

• Pressurized transportation systems cannot be arbitrarily intersected for extracting increments due to:
 - Pressure loss – extraction from pressurized pipelines.
 - Discharge of material and therefore critical modification of the lot material.
 - A critical prerequisite is that sampling operations should not constrict the material flow in order to minimize the risk of clogging and pressure surges.
 - Sampler must not interfere with transportation flux during “parking” position.
 - Design must respect TOS’ Principle of Sampling Correctness, elimination of all Incorrect Sampling Errors, i.e. no IDE, IEE and IPE.
Current horizontal “sampling procedure” at AMV power plant

• Current procedure causes major Incorrect Sampling Errors: IDE, IEE

Probe extraction “sampler”

Material recovery
Design principles: E-F-sampler

• 1/3 scale model has been designed to fit a horizontal pipeline with a circular cross section with diameter of 80 mm (test rig conditions).

• Direction of ducted material flow does not need to be fixed – the sampling tool (termed “scythe”) can move in both prograde and retrograde directions.

• An electric power source with sufficient over-capacity has been implemented to ensure a completely constant speed. N.B. - only to test run #1.
During sampling operations the sampling arm rotates 180 degrees through the ducted flow stream around a vertical axis.

- Dashed line on the top view shows the parking position of the sampling arm, designed in such way that no disturbances of the source stream can occur while here.

- Sampling arm has been designed with the primary objective of being able to sample the vertical segregation gradient.

- For milled bio-mass materials, experience show that there is only little vertical segregation during dilute flow conditions.
Design principles: E-F-sampler

• The sampling arm has a cross-sectional curved “box” form with parallel sidewalls.

• The opening width as well as the depth of this cutter must accommodate the requirement: width > 3 times the nominal top diameter of the ducted material.

• The outer angle of the cutter blade tip (at least 70 degrees) prevents material not belonging to the delineated increment from ‘climbing’ up along the edges into the cutter.

• The cutter blades are designed to be a complete analogue to parallel cutter blades on conventional falling stream cross-cutters.

• Downward facing outlet chute of the sampling arm is used for extraction of the material into a compositing container. Design specifications call for isokinetic extraction (test run #2).
Experimental test # 1: Design of experiment

- Focus of test run #1 has been on **initial technical performance assessment** and on how well sampling correctness can be achieved.

- Aluminate cement has been used as the main test material.

<table>
<thead>
<tr>
<th>Density</th>
<th>Particle size distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.22 g/cm³</td>
<td>D10</td>
</tr>
<tr>
<td></td>
<td>2 μm</td>
</tr>
</tbody>
</table>

- Steel pellets (cylindrical cut-wire pellets) have been added as a spiking material.

<table>
<thead>
<tr>
<th>Density</th>
<th>Particle size distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 7.4 g/cm³</td>
<td>~500 μm</td>
</tr>
</tbody>
</table>

N.B. Deliberate maximum segregation propensity!
Experimental test run #1: Design of experiment

- Overall rig length: ca. 120m
- Volume of pressure tank: 1m³
Experimental test run# 1: Design of experiment

- Variations of following parameters have been tested:
 - Sampling arm width: 2mm, 7mm, 14mm
 - Sampling frequency
 - Increase of spiking concentration: 5% -> 10%
 - Variation of load: low load (dilute phase), high load (dense phase)

 Low load = 7,365 t/h (122,75 kg/min)
 High load = 12,88 t/h (214,66 kg/min)

- For each scenario a composite sample (60 increments) has been extracted, replicated three times.

- For two scenarios initial variograms have been calculated.
Results of test run #1

• 2mm sampling width could not be used in any scenario due to clogging of material.

• No substantial difference in results between low and high load scenarios.

• 14mm sampling arm scenarios result in higher accuracy – but:

• All scenarios result in a bias (10-20% rel.) w.r.t. reference values of 5% and 10%.

Scenario: 10%, 14mm arm width, high load (3 composite samples – 60 increments, repeated on different day).
Results of test run #1

• Variogram for scenarios 5%, low load: 7mm vs. 14mm sampling arm width.

• Increase of sampling arm to 14mm width lowers maximum variance (sill) by around 50%. This is in compliance with expectations from TOS, as the effect of a much more efficient composite sampling.

• Both variograms (7mm and 14mm) show no periodic variations or trends.

N.B. Flat variograms
Explanation for current inaccuracy

• Segregation occurs while filling pressure rig’s sending tank (sic).

 • A substantial amount of material is not falling from the hopper into the pressure tank due to unfavorable silo design (red arrow).

 • The denser steel pellets might be therefore overrepresented in the transported material -> contributing to an explanation for the bias between composite sample and reference sample values.

Testing at this facility has since been discontinued: A new, more versatile testing facility has been selected, allowing also to test on biomass.
• The original construction design of course demands that no material can fall in the opening during parking.

• Due to a mistake in the manufacturing process the sampling arm opening is currently not closed when resting in parking position (sic). **Producer has been duly NOTIFIED!!**

• Experiments with sampler in parking position over the entire test run (no cutting) reveals that around 5-10% of the total composite weight is extracted by this effect.

• Additionally the concentration of the spiking material (high dense steel pellets) in the “specimens” (incorrectly extracted samples) is up to twice as high as the reference value – caused by the heavy segregation in the pipeline. With the result that approx. 7% of the stated (10-20% rel.) bias can be accounted for by this construction fault.

• The “designed” experimental test run #1 deliberately provoking segregation, in combination with this unlucky manufacturer's effect, limited test run #1.
Prospects for Test run #2 [February/March 2012]

• Development of Mark II prototype with the following main modifications:
 • Also 21 mm sampling arm width.
 • New extraction tube/mechanism with closed parking configuration.
 • Varying cutter rotation speed (accelerating and decelerating at the start/stop and with maximum horizontal speed at vertical plane crossing).

• Test phase #2 at different test facility (POSTEC, Porsgrunn, Norway)

• Testing of sampler with biomass (pulverized wood pellets) and similar powders:
 Experimental testing did not correspond well with timing of WCSB5

• Mounting and testing of acoustic sensors for predicting particle size distribution (% of fines).

• Up-scaling of final prototype and full scale implementation at converted coal power plant (combustion of wood and straw pellets), AMV (Denmark), is planned immediately after conclusion of phase #2.
Thank you for your attention!

Full account of the development of the E-F sampler at WCSB6